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Introduction

In artificial intelligence, decision theory deals with com-
puting a sequence of actions (policy) that an autonomous
agent must take in order to optimize its rewards (obtain its
goals in the most efficient manner). In many real world sit-
uation, an autonomous agent must deal with various sources
of uncertainty while computing its optimal policy. In sin-
gle agent settings, such decision making problems are for-
malized by partially observable Markov decison processes
(POMDPs) (Kaelbling, Littman, and Cassandra 2009). An
agent acting alone in non-deterministic settings may face un-
certainty from various sources: the underlying dynamics of
the environment and its evolvement over time may be non-
deterministic, the actions performed by the agent may have
non-deterministic effects, and the observations received by
the agent may be noisy or they may provide only partial in-
formation about the world it inhabits.

In multiagent settings, however, in addition to the afore-
mentioned uncertainties, an agent must also consider its in-
teractions with other agents sharing the common environ-
ment. The agents may interact through the state of the envi-
ronment, the observations received, and the rewards earned
— all of which could be affected by the actions of the other
agents. Hence an agent must also predict the actions that the
other agents are likely to take at each time step. Depend-
ing on the type of interactions between the agents, POMDPs
are generalized in one of two ways: on one hand in settings
where the agents share a common reward and a common
prior belief (e.g. team settings) decison making is formal-
ized by decentralized POMDPs (Dec-POMDPs) (Bernstein
et al. 2002), on the other hand in settings where a self-
interested agent must optimize its own rewards in presence
of other agents that may not share common interests or com-
mon priors the decision making is formalized by interactive
POMDPs (I-POMDPs) (Gmytrasiewicz and Doshi 2005).

My dissertation studies the decision making process for
self-interested agents in multiagent settings as formalized
by I-POMDPs. Particularly, I study scalable methods to
tractably solve such sequential decison making problems
whose complexity is doubly exponential in some variables.
In recent times I-POMDPs have found a myriad of applica-
tions across several disciplines which testifies to its grow-
ing appeal. In the field of law enforcement, I-POMDPs
have been used to explore strategies for countering money

laundering (Meissner 2011; Ng et al. 2010). In defense, I-
POMDPs have been enhanced to include trust levels for fa-
cilitating defense simulations (Seymour and Peterson 2009a;
2009b). They have been used to produce winning strate-
gies for playing the lemonade stand game (Wunder et al.
2011), explored for use in playing Kriegspiel (Del Giu-
dice,Gmytrasiewicz and Bryan 2009), and even discussed
as a suitable framework for a robot learning tasks interac-
tively from a human teacher (Woodward and Wood 2012;
Wang 2013). I-POMDPs have been modified to include em-
pirical models for simulating human behavioral data pertain-
ing to strategic thought and action (Doshi et al. 2010). The
growing appeal of [-POMDPs have necessitated research for
exploring scalable solution algorithms for the framework.

While computing an optimal policy, in addition to the un-
certainty in the evolvement of the environment and the infor-
mation recieved at each step in the form of observations, an
[-POMDP agent must also predict the behavior of the other
agents. To do so, the subject agent must maintain a set of
possible models of the other agents based on what it believes
are their beliefs, desires, and intentions. The problem is fur-
ther complicted as the other agents may themselves be ra-
tional agents that model all other agents (including the sub-
ject agent) in a similar manner. This complication leads to
a form of recursive modeling of other agents models which
in a two agent setting could be described as “what agent ¢
thinks about what agent j thinks about what agent ¢ thinks,
..., and so on”. I-POMDPs limit this form of nested rea-
soning to a finite level in order to achieve convergence. To
capture uncertainty involved in the current state of the envi-
ronment, an agent maintains a joint probability distribution
over the physical states and the set of models of the other
agents known as its belief. Over time, it updates the belief
using Bayesian update and computes optimal action to take
according to the update belief.

Naturally, each source of uncertainty increases the com-
plexity of decision making which are defined as its vari-
ous curses. In my dissertation, I propose various solution
techniques that address each of these curses while improv-
ing the scalability of I-POMDPs. First formally define the
I-POMDP framework and describe the curses involved in
solving them. Next I discuss the research I have done as a
part of my dissertation and the research that I plan to finish
before my defense. Finally I discuss my plans for future re-



search, my career plans after graduation, and what I hope to
gain from the doctoral consortium at ICAPS 2015.

Background

The problem of decision making under uncertainty for a
self-interested agents in multiagent settings is formalized
by interactive POMDPs (I-POMDPs) (Gmytrasiewicz and
Doshi 2005). I-POMDPs generalize POMDPs to multia-
gent settings by considering dynamic behavioral models of
other agents as part of the state space. These models may
themselves be I-POMDPs thereby leading to an infinitely-
nested modeling space. In order to make the framework
computable, the nesting is limited to a strategy level, [,
thereby leading to finitely-nested I-POMDPs, which make
the framework operational. Formally, a level [ I-POMDP for
agent 7 interacting with one other agent j is defined as the
following tuple:

I'POMDPi,l = <ISi,l7 Aa Ti7 Qia Oiv Ri7 OCI>

where:

e [S;; denotes the set of interactive states at strategy level,
l, defined as, 1.S;; = S x M;;_1, where S is the set of
physical states, and M ;1 is the set of models ascribed
to the other agent. We describe the model space after this
definition in this subsection.

o A=A, x Aj, is the set of joint actions of both agents.

o T;: S x AxS —[0,1], is the transition function which
gives the distribution over the next physical states given
the current state and a joint action.

e (); is the set of observations agent ¢ may receive.

e 0;: Ax S xQ; — [0,1], is the observation function
which is the probability with which agent ¢ receives an
observation conditioned on a joint action and the resulting
state.

e R, : S x A — R, is the reward function which is the
reward agent ¢ receives given a joint action performed by
both agents from a state.

e OC; is the optimality criterion. In this article, we focus on
optimizing the summed reward discounted over an infinite
number of remaining steps, called the horizon.

Dennett’s intentional stance (Dennett 1971) offers a way
to organize the space of mental models into those that are
intentional and denoted by ©;, and others that are subin-
tentional, denoted by SM;. Intentional models ascribe be-
liefs, capabilities, preferences and rationality in action selec-
tion to the other agent. Examples of intentional models in-
clude the decision-theoretic formalism of POMDPs. Subin-
tentional models include a distribution over actions, A(Aj),
which may be history dependent as in fictitious play (Fu-
denberg 1998). Here, A(-) denotes the set of all probabil-
ity distributions over the argument random variable. A spe-
cial example is the no-information model often represented
by a uniform distribution. A more powerful subintentional

model is the finite state automaton. We may follow a recur-
sive bottom-up construction of the interactive state space.

0.0 = {(bj.0.0,0)|bj.0 € A(ISj0)},
Mj70 = @%0 U SMj

0,1 = {(bj1,0;1)|bj1 € A(IS;1)},

IS;0 =S,

ISi’]_ =95x Z\4j’07

1511 = 5% Mji1, O;1={{bj1,0;1)|bj1 € AIS;1)},
M =0, UM;;_1
(D

The O-th level belief is a probability distribution over the
physical states only, and the O-th level models, Mj o, are
generally limited to be computable and consist of the set
of computable intentional models of level 0, ©; ¢, and the
subintentional models, SA/;. An intentional model, ;¢ =

(bj.0,0;0), Where b; o is agent j’s level O belief, b;o €
A(ISj}o), and éj70 = <Aj, Tj, Qj, Oj, Rj, OCj>, is collec-
tively labeled as j’s level O frame. Here, j is assumed to
be Bayesian and rational. O-th level intentional models are
the traditional POMDPs whose parameters, T, O;, and
R; are specified over j’s individual actions, A;. ! 2 An
agent’s first-level beliefs are joint probability distributions
over the physical states and level 0 models of the other
agent. First-level models are computable and include com-
putable level 1 intentional models and level 0 models of

the agent. A level 1 intentional model, 8,1 = (b;1,0;1),
consists of the agent’s first-level belief, b; 1, and its frame,

0,1 =(A,T;,Q;,0;, R;,0C;). Note that parameters in the
level 1 frame, T;, O; and R; are specified over the joint
actions, A. An agent’s second-level beliefs are distributions
over the physical states and level 1 models of the other agent,
and so on up to the level [. In settings involving multiple
agents, the actions of agent j is replaced by the joint actions
of all other agents and its model is replaced by the joint mod-
els of all other agents.

The agent bases its strategy on its current belief and picks
the policy that would maximize its long turn expected re-
ward. However, with each source of uncertainty, the com-
plexity of solution increases making exact algorithms in-
tractable. The uncertainties are captured in terms of the fol-
lowing curses:

e Curse of dimensionality results from the size of interac-
tive state space.

e Curse of history is a result of the number of observa-
tions and gets exponentially worse between two consecu-
tive time step.

e Curse of recursive reasoning is a an effect of curse of
history on the model space of other agent and indirectly
the dimensionality of the subject agents interactive state

"Note that the definition of a belief rests on first defining the
underlying state space. The state space is not explicitly stated in
the intentional model for brevity.

One way of obtaining a POMDP at level 0 is to use a fixed
distribution over the other agent’s actions and fold it into 7}, Oj,
and R; as noise.



space. The size of model space grows exponentially be-
tween two consecutive time step thereby further aggravat-
ing the curse of dimensionality.

o Curse of many agents manifests at each time step as the
size of joint model space and joint action space grows ex-
ponentially with number of agents in the environment.

In my dissertation, I propose approaches to mitigate the ef-
fect of each of these curses.

Current Research

In this section I describe the research that I have completed
as a part of my PhD dissertation.

Identifying Exploiting Weak Information Inducing
Actions in Solving POMDPs

In this work (Sonu and Doshi 2011), I present a method for
identifying actions that lead to observations which are only
weakly informative in the context of partially observable
Markov decision processes (POMDP). We call such actions
as weak- (inclusive of zero-) information inducing. Policy
subtrees rooted at these actions may be computed more effi-
ciently. Specifically, I consider actions that lead to observa-
tions that tend to be only weakly informative. As an exam-
ple, observations made during movement by a robotic vehi-
cle (typically modeled sequentially post action in a POMDP)
tend to be far less informative than those resulting from an
action dedicated to observing. I call such actions as weak-
information inducing; these include those that induce no
information as well. I provide a simple and novel defini-
tion for weak information-inducing actions, characterizing
the weakness of the observations using a parameter. Observ-
ing that policy trees rooted at zero-information inducing ac-
tions may be compressed, I utilize a simplified backup pro-
cess that excludes considering observations for any weak-
information inducing action while solving POMDPs. This
results in significant computational savings, albeit we are
currently unable to upper bound the error in optimality that
this approximation introduces in the POMDP solution. I
demonstrate the significant computational savings by ex-
ploiting such actions in the context of an exact solution tech-
nique incremental pruning (IP) (Cassandra et al. 1997) and
the well-known point-based value iteration (PBVI) (Pineau
et al. 2003), and empirically show that the solutions are of
comparable quality. Ignoring weak information inducing ac-
tions mitigates the curse of history and the ideas presented
in this paper may be extended to I-POMDPs.

Generalized and Bounded Policy Iteration for
Finitely Nested I-POMDPs

In this work (Sonu and Doshi 2012; 2014) I address the
curses of dimensionality and recursive reasoning. One class
of POMDP solution techniques deals with searching the pol-
icy space for the optimal policy. This class of techniques is
known as policy iteration. 1 generalize policy iteration for
POMDPs to I-POMDPs for significant scalability. The mo-
tivation behind this work is that while the model space of
an agent it continuous, the models of the other agents may

be grouped into discreet sets that are behaviorally equiva-
lent thereby drastically reducing the dimensionality of the
problem. I achieve such compression in dimensionality by
representing the policy of the other agent as finite state con-
trollers (FSCs) where each node of the controller represents
a the root node of a policy and each edge represents tran-
sition on receiving an observation. This reduces the inter-
active state space to a discreet set. However, the size of
such controllers could still grow exponentially between time
steps (curse of recursive reasoning). To tackle this problem,
I generalize bounded policy iteration (BPI) (Poupart et al.
2003) to I-POMDPs as interactive bounded policy iteration
(I-BPI). BPI improves the current policy (controller) using
a linear program approach that attempts to replace a node
with a better valued node hence keeping the controller size
fixed. The drawback of such an approach is that the con-
trollers tend to converge to a local optima. However, local
optima could be easily escape by adding few nodes so that
the controller size doesn’t explode as a result.

Drawing from the results of BPI, I first reformulate the
interactive state space of level [ -POMDP as the join of the
physical state space and the nodes of a level [ — 1 I-POMDP
controller. The policy iteration is carried in a bottom up fash-
ion and is interleaved between levels to facilitate anytime so-
lution. I-BPI outperforms and demonstrates significant scal-
ability over the previous state of the art algorithm, interac-
tive point based value iteration (I-PBVI) (Doshi and Perez
2008), in terms of the size of the problem (mitigating curse
of dimensionality), and number of levels and frames of the
agents (mitigating curse of recursive reasoning). Besides, for
the first time we are able to solve problems involving multi-
ple other agents.

Bimodal Switching for Online Planning in
Multiagent Settings

Next I further improve on addressing the curse of dimension-
ality in online settings (Sonu and Doshi 2013). I first prove
that in multiagent settings where the observations of the sub-
ject agent are not affected by the actions of other agent but
only depend on the physical state and the agent’s own action,
the observations are more informative when the entropy of
the belief over physical states is low, i.e. when the agent is
less uncertain about the current physical states. Based on this
observation, I present a novel two-stage approach that fo-
cuses first on online planning as if the agent is alone, treating
the other agents as noise, in order to reduce uncertainty in its
belief over the physical state. In this mode, the agent is mod-
eled as a POMDP and utilizes a fast POMDP-based planning
technique, SARSOP (Kurniawati et al. 2008), that takes or-
ders of magnitude less time to execute as compared to the
[-POMDP solver. Subsequently, the agent switches to the I-
POMDP model combining its updated belief over the state
and the initial belief over the models. It now performs on-
line planning using interactive particle filtering (Doshi and
Gmytrasiewicz 2009).

A key question is when should the agent switch from the
POMDP to the I-POMDP mode? In order to answer this, the
agent at every step computes lower and upper bounds on the
optimal decision at that step. The agent switches to the latter



mode when the fractional difference between the lower and
upper bounds at any step become less than a parameter, €.
Because of the convexity property of the lower-bound value
function (the POMDP described earlier), the difference be-
tween the two typically reduces as beliefs become less un-
certain. The computational savings result because during the
initial steps of online planning, a fast and scalable single-
agent approach is utilized.

Individual Planning in Agent Populations

Of all the curses that afflict -POMDP solutions, the curse
of many agents is the most severe. It affects not only the
time complexity of the solution but also that of the mem-
ory required to represent the problem. The number of joint
actions and joint models grows exponentially with the num-
ber of agents. Thus the storage requirement for the transi-
tion, observation, and reward function grows exponentially
and so does the complexity of the iterative algorithms used
to solve the -POMDP. While the previous approaches for
solving [-POMDPs focus on mitigating the curses of dimen-
sionality, history, and recursive reasoning, there has been no
directed effort to solve I-POMDPs involving many agents.
As a result [-POMDPs haven’t been solved for problems in-
volving more than five agents and that too for the simplis-
tic tiger problem (Gmytrasiewicz and Doshi 2005). In this
work (Sonu et al. 2015) I exploit problem structures such
as anonymity and context specific independence that are in-
herent in many real world problem domain and demonstrate
the scalability to problems involving upto 1500 agents in a
reasonable time.

In order to scale to a massive number of agents, I first
formalize a factored representation of the agent’s belief and
derive a factored belief update for the same. Next, extending
the work presented in action graph games (AGGs) (Jiang,
Leyton-Brown, and Bhat 2011) in game theory literature,
I propose utilizing an extensive version of anonymity and
context-specific independence for dramatic scalability in I-
POMDPs. In many settings, the transition, observation, and
reward function do not depend directly on the identities of
agent performing each action as is represented by a joint ac-
tion, but on the number of agents performing each action
which is a much cruder representation of other agents’ ac-
tion at each time step and belongs to a much smaller set of
action counts compared to the set of joint actions. Moreover,
given a context the effects on state, observation, and reward
may depend on the counts of only a few actions rather than
counts of all actions. This is known as context-specific inde-
pendence and it further compresses the set of action counts.
The contexts may also depend on the frame of the other
agent performing an action. I utilize hypergraphs to cap-
ture the context-specific independence inherent in the prob-
lem. At each step, a dynamic program maps agents belief
and context to a distribution over the relevant action counts
which is then utlized instead of joint actions in solution. I am
currently working on further refining the approach towards
publication in a journal. I plan on submitting the extended
article to the Journal of Artificial Intelligence Research be-
fore my defense.

Realistic Simulation Testbed for Multiagent
Decision Making

Yet another aspect of multiagent decision making that has
been gaining ground in recent times is its application in real
world scanario. The utilization of drones in the field of de-
fense has opened up a huge avenue for deployment of au-
tonomous agents. These agents may operate individually (as
in [-POMDPs) or as a team (as in Dec-POMDPs) to perform
certain reconnaissance tasks. Hence such decision theoretic
frameworks could be used to solve for optimal policies that
would guide the agents’ behavior. I worked on developing
a realistic simulation testbed for evaluating such policies to
test the effectiveness of these agents before they could be de-
ployed in real world. It is called the Georgia Testbed for Au-
tonomous Control of vehicles (GaTAC). GaTAC provides a
low-cost, open-source, and flexible distributed environment
for realistically simulating the problem domains and eval-
uating solutions produced by multiagent decision making
algorithms. For this project, we utilized an off-shelf open-
source three dimensional flight simulator and added a com-
munication module and an autonomous control module. The
communication module enables instances of GaTAC to com-
municate with each other and the autonomous control mod-
ule is used to control an agent (an autonomous unmanned
aerial vehicle) either manually by a human operator or by
using policies generated by decision theoretic frameworks.
The source code for GaTAC is available under the open
source AGPL licence agreement.

Future Research

In the future, I wish to continue my research autonomous
agents and artificial intelligence in a broader sense. In this
section, I describe some of the possible research directions
that I wish to undertake in future.

Scalable Autonomous Planning

I wish to continue the research I undertook for my disserta-
tion on scalable approaches for multiagent decision making.
I wish to explore the problem of autonomous multiagent de-
cision making in both individual and team settings. While
much progress has been made in this regard, we are still
far from their application to solve real-world problems. Ex-
ploiting problem structure such as anonymity and context-
specific independence is a good way to move forward. Many
other such structures exist in particular problem domains
that remain to be explored.

Applications of Multiagent Planning

Also, I wish to explore application of autonomous multia-
gent decison making in real-world scenarios. Some of the
scenarios where decision theoretic agents may be deployed
include but are not limited to the field of robotics, disas-
ter management,self driving vehicles, law enforcement and
security, defense, healthcare in providing assistance to the
elderly, disabled or the sick, routing ground and air traf-
fic, auctioning, and finance. Robot soccer and other team
sports require deployment of agents that could both collabo-
rate with their teammates and outsmart their opponents. Nei-



ther Dec-POMDPs nor I-POMDPs capture such problem de-
scription completely by themselves. Such avenues remain to
be explored.

Multiagent Learning

Multiagent learning is yet another field that has garnered
much interest over the years. Many times, the models of
the other agents may not be available to the subject agent
and need to be learnt based on their interactions. The learnt
models may then be solved to compute an optimal policy for
the subject agent. This field of research is particularly use-
ful in ad-hoc settings where heterogeneous agents (agents
designed by different teams) are required to interact with
each other and in settings where agents may be dynamically
added to or removed from the environment.

Game Theory

[-POMDPs draw much inspiration from game theory (par-
ticularly bayesian games and stochastic games). Although
game theory has been studied detail over many decades,
multiplayer games are still largely unexplored and have a
lot to offer. I wish work on stochastic games and bayesian
games and explore their relation to I-POMDPs in the future.

Expectations from Doctoral Consortium

I am very close to the completion of my dissertation and I
believe that my research makes a strong thesis. After grad-
uation, I seek to pursue a career in academic research. Cur-
rently I am looking for position as a post-doctoral research
associate in a field close to my research area. Eventually, I
plan on joining a tenure-track academic position. My paper
titled ~’Individual Planning in Agent Populations: Exploit-
ing Anonymity and Frame-Action Hypergraphs” has been
accepted for publication at ICAPS 2015 and I plan on at-
tending the conference to present it. Through this doctoral
consortium program I wish to interact with other doctoral
students and mentors and present my research to them in
hopes for possible future collaboration. I also seek advice
from mentors regarding my career choice and regarding per-
tinent research that offer the most scope for personal growth.
I would appreciate any critique that I may receive on my the-
sis so that I may improve it before completion.
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